On the Order of Approximation of Continuous Functions by Positive Linear Operators of Finite Rank

R. K. VASILIEV

Chousovskaia, 11, korp. 5, kv. 21, 107–207, 6–207, Moscow, Russia

AND

F. GUENDOUZ

Institut de Mathématiques, Université d'Annaba, B.P. N 12, Annaba, Algeria

Communicated by Ronald A. DeVore

Received January 26, 1989: revised April 15, 1991

Let $\{L_n\}_{n \in \mathbb{N}}$ be a sequence of positive linear operators from C[0, 1] into $B(\Omega)$. where $B(\Omega)$ is the space of real bounded functions over $\Omega \subset [0, 1]$, meas $(\Omega) > 0$. Suppose that for each *n* the linear space $\{L_n f: f \in C[0, 1]\}$ has dimension n + 1. It is shown that the quantity

$$n^2 \sum_{j=0}^2 |L_n(t^j; x) - x^j|$$

does not tend to zero on a set of positive measure. C 1992 Academic Press, Inc.

1. INTRODUCTION

It was already shown by P. P. Korovkin [1] that for the functions 1, cos x, and sin x the order of approximation by positive linear polynomial operators $L_n(f; x)$ $(n \in \mathbb{N}, f \in C_{2\pi}, L_n f$ is a trigonometric polynomial of order n) can not be better than $1/n^2$ in the norm of uniform convergence. Ph. C. Curtis [2] and V. K. Dzyadyk [3] have generalized this result to the spaces $L^p[-\pi, \pi]$, $1 \le p < \infty$. One of the authors of this note [4] has extended the result of Korovkin to the setting of almost everywhere convergence. It was shown that almost everywhere at least one of the quantities

$$n^{2}[L_{n}(1;x)-1], \qquad n^{2}[L_{n}(\cos t;x)-\cos x],$$
$$n^{2}[L_{n}(\sin t;x)-\sin x] \qquad (1.1)$$

does not tend to zero if the norms of the operators $||L_n||_{C_{2\pi} \to C_{2\pi}}$ are uniformly bounded. Furthermore, for convolution operators the same result holds for all points of \mathbb{R} . All these results were based on the Bernstein inequality for trigonometric polynomials of order $n : ||T'_n||_{C_{2\pi}} \le n ||T_n||_{C_{2\pi}}$.

If instead of 1, $\cos x$, and $\sin x$, we take 1, x, and x^2 , one can obtain the same results for algebraic polynomial operators.

V. S. Vidensky [5] has shown that neither the polynomial properties of operators nor the Bernstein inequality is necessary for the proof of these results; it is the dimensions of the operators' images that play the principal role.

Let C[a, b] be the space of real continuous functions on [a, b]. A linear operator L mapping C[a, b] into a linear space of finite dimension n is called an *operator of finite rank n*. Let L_n be a positive linear operator of rank n+1 defined on C = C[0, 1] and let $L_n(1; x) \equiv 1$. It was shown in [5] that

$$2 \|L_{n}(t;x) - x\|_{C} + \|L_{n}(t^{2};x) - x^{2}\|_{C}$$

$$\geq \|L_{n}((t-x)^{2};x)\|_{C} \geq 1/4(n+1)^{2}.$$
(1.2)

Furthermore, it was shown in [5] that

$$\inf_{L_n \in \mathscr{L}_n} \| L_n((t-x)^2; x) \|_C \leq 1/4n^2,$$
(1.3)

where \mathscr{L}_n is the class of positive linear operators of rank n+1 from C[0, 1] into itself satisfying the condition $L_n(1; x) \equiv 1$. A similar result holds in the trigonometric case.

In this paper, using basically the method of V. S. Vidensky, we give a generalization of these results and those of [4]. We shall show that for positive linear operators L_n with finite rank n+1, almost everywhere at least one of the quantities

$$n^{2}[L_{n}(t^{j}; x) - x^{j}], \quad j = 0, 1, 2,$$

does not tend to zero as $n \to \infty$, even if the sequence of norms $||L_n||, n \in \mathbb{N}$, is not bounded. Furthermore, inequalities (1.2) and (1.3) are true in the case of positive linear operators in spaces of functions defined on sets $\Omega \subset [0, 1]$.

The same results hold for the quantities (1.1) in the trigonometric case.

2. Lemmas

Let $F \subset [0, 1]$ be an infinite closed set, and $m \in \mathbb{N}$. Designate by $0 = \xi_0 < \xi_1 < \cdots < \xi_{n_m} = 1$, where $n_m \leq m$, all the points of the set $\omega_m = \{\xi = k/m : [(k-1)/m, (k+1)/m) \cap [F \cup \{0\} \cup \{1\}] \neq \emptyset, \ 0 \leq k \leq m\}$, and put

$$F_m := \left\{ \bigcup_{k \in v_m} \left[\xi_{k-1}, \xi_k \right] \right\} \cup \{1\},$$

where

$$v_m = \{k: \xi_k - \xi_{k-1} = 1/m, [\xi_{k-1}, \xi_k) \cap F \neq \emptyset\}.$$

Note that $F_m \supset F$. Taking into account that the set $(0, 1) \setminus F$ is composed of disjoint open intervals, we get

$$\lim_{m \to \infty} \operatorname{meas}([0, 1] \setminus F_m) = \lim_{m \to \infty} \frac{m - n_m}{m} = \operatorname{meas}([0, 1] \setminus F).$$

Therefore

$$\lim_{m \to \infty} \operatorname{meas}(F_m) = \lim_{m \to \infty} \frac{n_m}{m} = \operatorname{meas}(F).$$

For each fixed natural number *n* choose m = m(n) so that $n_m \le n < n_{m+1}$; and hence

$$\lim_{n \to \infty} \frac{n}{m(n)} = \operatorname{meas}(F) \qquad (n, m = m(n) \in \mathbb{N}).$$
(2.1)

Now, designate by $\lambda_{nk}(x)$ $(n \in \mathbb{N}; k = 0, 1, ..., n_m)$ the continuous functions on [0, 1] such that $\lambda_{nk}(\xi_i) = \delta_{ki}$, where δ_{ki} is the Kronecker delta, $0 \le i, k \le n_m$, and $\lambda_{nk}(x)$ is linear on each segment $[\xi_{i-1}, \xi_i]$ $(i = 1, ..., n_m)$. Consider the sequence of positive linear operators on C[0, 1] with ranks $n_m \le n$ given by the equalities

$$\Lambda_n(f;x) = \sum_{k=0}^{n_m} f(\xi_k) \,\lambda_{nk}(x),$$

where,

$$n, m = m(n) \in \mathbb{N}, \quad n_m \leq n < n_{m+1} \quad (f \in C[0, 1], 0 \leq x \leq 1).$$

For every $f \in C[0, 1]$, the function $A_n(f; x)$ coincides with the function f(x) at all points ξ_k , $k = 0, 1, ..., n_m$; it is also continuous on [0, 1] and linear on each segment $[\xi_{k-1}, \xi_k]$ $(k = 1, ..., n_m)$.

In the following, B(F), where $F \subset [0, 1]$, is the space of real bounded functions with the uniform norm over $F: ||f||_{B(F)} = \sup_{x \in F} ||f(x)|$.

LEMMA 1. Let
$$F \subset [0, 1]$$
 be an infinite closed set. Then

$$\lim_{n \to \infty} \{ n^2 \| \Lambda_n((t-x)^2; x) \|_{B(F)} \} = [\operatorname{meas}(F)]^2 / 4.$$
 (2.2)

Proof. Because of $\Lambda_n(1; x) \equiv 1$ and $\Lambda_n(t; x) = x$, we have $\Lambda_n((t-x)^2; x) = \Lambda_n(t^2; x) - x^2$. Furthermore, for $x \in [\xi_{k-1}, \xi_k] \subset F_m^+$ this function is a second degree polynomial which vanishes at the points ξ_{k-1} and ξ_k . Therefore $0 \leq \Lambda_n((t-x)^2; x) = (x - \xi_{k-1})(\xi_k - x) \leq (\xi_k - \xi_{k-1})^2/4 \leq 1/4m^2$ for $\xi_{k-1} \leq x \leq \xi_k$; and hence

$$\|A_n((t-x)^2; x)\|_{B(F_m)} = 1/4m^2,$$

$$\|A_n((t-x)^2; x)\|_{B(F)} \ge (1-\theta_m^2)/4m^2,$$

where $\theta_m = \text{meas}(F_m \setminus F)/\text{meas}(F_m)$; $\theta_m \to 0$ as $m \to \infty$, $\text{meas}(F) \neq 0$. As a consequence of the last result and of (2.1) we obtain

$$\lim_{n \to \infty} \{ n^2 \| \Lambda_n((t-x)^2; x) \|_{B(F)} \}$$

=
$$\lim_{n \to \infty} \{ n^2 \| \Lambda_n((t-x)^2; x) \|_{B(F_m)} \} = [\operatorname{meas}(F)]^2 / 4.$$

This completes the proof of Lemma 1.

LEMMA 2. Let $E \subset [0, 1]$ be a Lebesgue measurable set, $\mu = meas(E) > 0$, and let h be a real number such that

$$0 < h < \mu/n, \tag{2.3}$$

where n is a positive integer. Then there exist some points $x_j \in E$, $j=0, 1, ..., n, x_0 < x_1 < \cdots < x_n$, such that

$$x_j - x_{j-1} \equiv 0 \pmod{h}, \quad j = 1, ..., n.$$
 (2.4)

Proof. Let $h^{-1}E := \{x = h^{-1}t : t \in E\}$, and let $\chi_{h^{-1}E}(x)$ be the characteristic function of the set $h^{-1}E$. Setting

$$g(x) = \sum_{k=0}^{\infty} \chi_{h^{-1}E}(x+k), \qquad x \in [0, 1),$$

we get

$$\int_0^1 g(x) \, dx = \operatorname{meas}(h^{-1}E) = h^{-1}\mu > n.$$

There is, at least, one point $y_* \in [0, 1)$ where $g(y_*) \ge n + 1$. In other words, we can find in $h^{-1}E$ some points $y_0 < y_1 < \cdots < y_n$ such that $y_j - y_{j-1} \equiv 0 \pmod{1}$, j = 1, ..., n. The points $x_j = hy_j$, j = 1, ..., n, satisfy (2.4).

3. RESULTS

The main result of this paper can be stated as follows.

THEOREM 1. Let $\{L_n\}_{n \in \mathbb{N}}$ be a sequence of positive linear operators of rank n + 1 mapping C[0, 1] into $B(\Omega)$, where $\Omega \subset [0, 1]$ is a measurable set. Suppose that $L_n(f; \cdot)$ is a measurable function for each f and each n. Furthermore, let $\gamma = \{n_i\}$, where $n_1 < n_2 < \cdots < n_i < \cdots$, and

$$e_{\gamma} = \{x: \lim_{i \to \infty} n_i^2 \mid L_{n_i}(t^j; x) - x^j \mid = 0; j = 0, 1, 2; x \in \Omega\}.$$
 (3.1)

Then $meas(e_n) = 0$.

Proof. It is quite simple to show that e_{γ} is measurable. Assume $\max(e_{\gamma}) > 0$. Let $\delta > 0$ so that $\max(e_{\gamma})/2 > \delta$. Then by Egorov's theorem, there exists a measurable set $v \subset e_{\gamma}$, $\mu = \max(v) > \max(e_{\gamma}) - \delta$, on which the convergence of the expressions in (3.1) is uniform:

$$\lim_{i \to \infty} n_i^2 \| L_{n_i}(t^j; x) - x^j \|_{B(v)} = 0, \qquad j = 0, 1, 2,$$
(3.2)

where $|| f ||_{B(v)} = \sup_{x \in v} |f(x)|$.

Set $D_n := \{x : L_n(f; x) = 0, \forall f \in C[0, 1], x \in \Omega\}$, and $D = \limsup D_{n_i} = \bigcap_{k=1}^{\infty} \bigcup_{i=k}^{\infty} D_{n_i}$, that is to say D is the set of all points that belong to an infinite number of the sets D_{n_i} . Then $e_{\gamma} \cap D \neq \emptyset$ and $\max(e_{\gamma} \cap [\bigcup_{i=k}^{\infty} D_{n_i}]) \to 0$ as $k \to \infty$. Therefore, without loss of generality, we may assume that

$$v \cap D_n = \emptyset$$
 for $n_i \ge N$. (3.3)

Fix $n_i \ge N$. By Lemma 2, we may find some points $x_k \in v$ $(k=0, 1, ..., n_i+1)$, $0 \le x_0 < x_1 < \cdots < x_{n_i+1} \le 1$, for which $x_k - x_{k-1} \equiv 0 \pmod{h}$ $(k=1, ..., n_i+1)$, where h is a positive number so that $h < \mu/(n_i+1)$, $\mu = \text{meas}(v)$.

Now, let $\{u_j(x)\}_{j=0,1,...,n_i}$, $x \in \Omega$, be a system generating the linear space $\{L_{n_i}f: f \in C[0,1]\} \subset B(\Omega)$. Consider the matrix

$$A = \| u_j(x_k) \|_{j=0,1,\dots,n_l;k=0,1,\dots,n_l+1}.$$

If rank A = 0, then $L_{n_i}(f; x_k) = \sum_{j=0}^{n_i} a_j(f) u_j(x_k) = 0$ for every $f \in C[0, 1]$, which implies that $\{x_k\}_{k=0, 1, \dots, n_i+1} \subset v \cap D_{n_i}$. This contradicts (3.3).

Therefore rank $A \neq 0$. Consider a non-trivial vector $\{\gamma_k\}_{k=0, 1, ..., n_l+1}$ orthogonal to all the rows of the matrix A:

$$\sum_{k=0}^{n_i+1} |\gamma_k| = 1; \qquad \sum_{k=0}^{n_i+1} \gamma_k u_j(x_k) = 0, \qquad j = 0, 1, ..., n_i.$$
(3.4)

Now, define a continuous function \tilde{h} on [0, 1] by the conditions $\tilde{h}(x_k) = \operatorname{sgn} \gamma_k$, $k = 0, 1, ..., n_i + 1$; $\tilde{h}(0) = \tilde{h}(x_0)$, $\tilde{h}(1) = \tilde{h}(x_{n_i+1})$, $\tilde{h}(x)$ is linear on each interval $[0, x_0]$, $[x_0, x_1]$, ..., $[x_{n_i}, x_{n_i+1}]$, and $[x_{n_i+1}, 1]$. Then $\tilde{h} \in \operatorname{Lip}_{2/h} 1$ and $\|\tilde{h}\|_{C[0,1]} = 1$.

The function $L_{n_i}(\tilde{h}; x)$, $x \in \Omega$, belongs to the linear space spanned by $u_i(x), x \in \Omega$. Hence from (3.4),

$$\sum_{k=0}^{n_{i}+1} \gamma_{k} L_{n_{i}}(\tilde{h}; x_{k}) = 0.$$
(3.5)

But then

$$1 = \sum_{k=0}^{n_{i}+1} |\gamma_{k}| = \sum_{k=0}^{n_{i}+1} \gamma_{k} \tilde{h}(x_{k}) = \sum_{k=0}^{n_{i}+1} \gamma_{k} [\tilde{h}(x_{k}) - L_{n_{i}}(\tilde{h}; x_{k})]$$

$$\leq \sum_{k=0}^{n_{i}+1} |\gamma_{k}| |L_{n_{i}}(\tilde{h}; x_{k}) - \tilde{h}(x_{k})| \leq ||L_{n_{i}}(\tilde{h}; x) - \tilde{h}(x)||_{B(v)}.$$
(3.6)

On the other hand, from the Cauchy–Schwarz inequality for positive linear functionals, we obtain for $x \in \Omega$

$$|L_{n_{i}}(\tilde{h}; x) - \tilde{h}(x)|$$

$$\leq L_{n_{i}}(|\tilde{h}(t) - \tilde{h}(x)|; x) + |\tilde{h}(x)| |L_{n_{i}}(1; x) - 1|$$

$$\leq 2h^{-1}L_{n_{i}}(|t - x|; x) + |L_{n_{i}}(1; x) - 1|$$

$$\leq 2h^{-1}[L_{n_{i}}((t - x)^{2}; x) \cdot L_{n_{i}}(1; x)]^{1/2} + |L_{n_{i}}(1; x) - 1|. \quad (3.7)$$

Then by (3.6) and letting h tend to $\mu/(n_i + 1)$, we have

$$\mu^{2} [1 - \|L_{n_{i}}(1; x) - 1\|_{B(v)}]^{2} / 4 \|L_{n_{i}}(1; x)\|_{B(v)}$$

$$\leq (n_{i} + 1)^{2} \|L_{n_{i}}((t - x)^{2}; x)\|_{B(v)}$$

$$\leq (n_{i} + 1)^{2} [\|L_{n_{i}}(1; x) - 1\|_{B(v)}$$

$$+ 2 \|L_{n_{i}}(t; x) - x\|_{B(v)} + \|L_{n_{i}}(t^{2}; x) - x^{2}\|_{B(v)}].$$
(3.8)

By virtue of (3.2), the left and right hand sides of (3.8) tend respectively to $\mu^2/4$ and 0 as $n_i \to \infty$, which contradicts $\mu > 0$. Thus we infer that $meas(e_{\gamma}) = 0$.

Remark. In [4], it was shown that e_{γ} can be non-empty and even uncountable (Theorem 2).

THEOREM 2. Let \mathcal{L}_n , $n \in \mathbb{N}$, be the class of positive linear operators L_n of rank n+1 mapping C[0, 1] into $B(\Omega)$ with $\Omega \subset [0, 1]$ and satisfying the condition $L_n(1; x) \equiv 1$. Further, let Δ be a subset of Ω and $\overline{\Delta}$ the closure of Δ . Then

$$\inf_{L_n \in \mathscr{L}_n} \|L_n((t-x)^2; x)\|_{B(\varDelta)} = [\operatorname{meas}(\overline{\varDelta})]^2 / 4(n+1)^2 + \alpha_n/n^2, \quad (3.9)$$

where $\alpha_n = \alpha_n(\Delta) \ge 0$ for each n and $\alpha_n \to 0$ as $n \to +\infty$.

Proof. By virtue of Lemma 1, it is sufficient to prove the inequality

$$\inf_{L_n \in \mathscr{L}_n} \|L_n((t-x)^2; x)\|_{B(\mathcal{A})} \ge [\operatorname{meas}(\overline{\mathcal{A}})]^2 / 4(n+1)^2.$$
(3.10)

Suppose that meas(\overline{A}) > 0 and 0 < h < h' < meas(\overline{A})/(n + 1). There exist, by Lemma 2, some points $x_0^* < x_1^* < \cdots < x_{n+1}^*$, $x_k^* \in \overline{A}$, with $x_k^* - x_{k-1}^* \equiv$ 0 (mod h'), k = 1, 2, ..., n + 1. Then we can find n + 2 points $x_0 < x_1 < \cdots < x_{n+1}$, $x_k \in A$, such that $x_k - x_{k-1} > h$, k = 1, 2, ..., n + 1.

Let L_n , $n \in \mathbb{N}$, be a positive linear operator of rank n+1 from C[0, 1]into $B(\Omega)$ with $L_n(1; x) = 1$ and let $\{u_j(x)\}_{j=0,1,\dots,n}$, $x \in \Omega$, be a system generating the linear subspace $\{L_n f : f \in C[0, 1]\}$ of $B(\Omega)$. Since $1 = L_n(1; x) = \sum_{j=0}^n a_j u_j(x)$, we have rank $A = \operatorname{rank} ||u_j(x_k)||_{0 \le j \le n; 0 \le k \le n+1} \ne 0$. Now, using the arguments of the proof of Theorem 1, we obtain, by (3.7) and (3.8), the inequality

$$||L_n((t-x)^2; x)||_{B(\Delta)} \ge [\operatorname{meas}(\overline{\Delta})]^2/4(n+1)^2,$$

which yields the inequality (3.10).

As a consequence of Theorem 2 we obtain the following result.

THEOREM 3. Let $\{L_n\}_{n \in \mathbb{N}}$ be a sequence of positive linear operators of rank n+1 from C[0,1] into $B(\Omega)$ with $\Omega \subset [0,1]$. Suppose that $L_n(1; x) = 1$ for each $n \in \mathbb{N}$ and $\Delta \subset \Omega$. Then

$$2 \| L_n(t;x) - x \|_{B(\mathcal{A})} + \| L_n(t^2;x) - x^2 \|_{B(\mathcal{A})}$$

$$\geq \| L_n((t-x)^2;x) \|_{B(\mathcal{A})} \geq [\operatorname{meas}(\overline{\mathcal{A}})]^2 / 4(n+1)^2, \qquad (3.11)$$

where $\overline{\Delta}$ stands for the closure of Δ .

Let $L^{p}(\Omega)$, $1 \leq p \leq \infty$, be the spaces of those real-valued and measurable functions which are Lebesgue integrable to the *p*th power over measurable set $\Omega \subset [0, 1]$. We have:

THEOREM 4. Under the same conditions of Theorem 1, suppose that the spaces C[0, 1] and $B(\Omega)$ are replaced by $L^{p}[0, 1]$ and $L^{p}(\Omega)$, $1 \le p \le \infty$, respectively. Then for each $v \subset \Omega$, meas(v) > 0, there exists a constant $C_{v} > 0$ so that

$$|L_{n}(1; x) - 1||_{L^{p}(v)} + 2 ||L_{n}(t; x) - x||_{L^{p}(v)} + ||L_{n}(t^{2}; x) - x^{2}||_{L^{p}(v)} \ge C_{v}/n^{2}.$$
(3.12)

Proof. If the inequality (3.12) is not true, there exists a sequence of indexes $n_0 < n_1 < \cdots < n_i < \cdots$ such that $\lim_{i \to \infty} n_i^2 [L_{n_i}(t^j; x) - x^j] = 0$, j = 0, 1, 2, for almost all $x \in v$. But this contradicts the proof of Theorem 1.

All results, we have obtained, are still valid in the trigonometric case. In particular, the following assertion holds.

THEOREM 1*. Under the same conditions of Theorem 1, suppose that the spaces C[0, 1], $B(\Omega)$, and the set e_{γ} are replaced by $C_{2\pi}$, $B(\Omega_*)$, where $\Omega_* \subset [0, 2\pi)$ is a measurable set, and

$$e_{\gamma}^{*} = \{x: \lim_{i \to \infty} n_{i}^{2} | L_{n_{i}}(1; x) - 1 | = 0,$$
$$\lim_{i \to \infty} n_{i}^{2} | L_{n_{i}}(\cos t; x) - \cos x | = 0,$$
$$\lim_{i \to \infty} n_{i}^{2} | L_{n_{i}}(\sin t; x) - \sin x | = 0; x \in \Omega_{*} \}$$

respectively. Then $meas(e_v^*) = 0$.

REFERENCES

- 1. P. P. KOROVKIN, "Linear Operators and Approximation Theory," Hind. Publ. Comp., Delhi, 1960.
- PH. C. CURTIS, The degree of approximation by positive convolution operators, *Michigan Math. J.* 12 (1965), 153-160.
- 3. V. K. DZYADYK, On the approximation of functions by linear positive operators and singular integrals, *Mat. Sb.* **70** (1966), 508-517. [In Russian]
- 4. R. K. VASILIEV, On the order of approximation of functions on sets with a positive measure by linear positive polynomial operators, *Mat. Zametki* 13 (1973), 457-468. [In Russian]
- 5. V. S. VIDENSKY, On one exact inequality for linear positive operators of finite rank, *Dokl. Akad. Nauk Tadzhik. SSR* 24 (1981), 715–717. [In Russian]