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Let {LnLaJ be a sequence of positive linear operators from CEO, 1] into B(D).
where B(Q) is the space of real bounded functions over Q c [0. 1], meas(Q) > O.
Suppose that for each n the linear space {LnI/E CEO. I]} has dimension n + 1. It
is shown that the quantity

2

n2 I ILn(IJ;X)-xJI
;=0

does not tend to zero on a set of positive measure. ,'(:' 1992 Academic Press. Inc.

1. INTRODUCTION

It was already shown by P. P. Korovkin [1] that for the functions 1,
cos x, and sin x the order of approximation by positive linear polynomial
operators L n(f: x) (11 EN, fE C 2n:, Lnf is a trigonometric polynomial of
order n) can not be better than l/n 2 in the norm of uniform convergence.
Ph. C. Curtis [2] and V. K. Dzyadyk [3] have generalized this result to the
spaces U[-n,n], l:::;;p<w. One of the authors of this note [4] has
extended the result of Korovkin to the setting of almost everywhere
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convergence. It was shown that almost everywhere at least one of the
quantities

n2[Ln(l; x)-I], n2[Ln(cos t; x)-cos x],

n2[Ln(sint;x)-sinx] (Ll)

does not tend to zero if the norms of the operators II L n II C2, ~ Ch are
uniformly bounded. Furthermore, for convolution operators the same
result holds for all points of ~. All these results were based on the
Bernstein inequality for trigonometric polynomials of order n: II T:II C2.:::;

n II Tn II C2,·

If instead of 1, cos x, and sin x, we take 1, x, and x2, one can obtain the
same results for algebraic polynomial operators.

V. S. Vidensky [5] has shown that neither the polynomial properties of
operators nor the Bernstein inequality is necessary for the proof of these
results; it is the dimensions of the operators' images that play the principal
role.

Let C[a, b] be the space of real continuous functions on [a, b]. A linear
operator L mapping C[a, b] into a linear space of finite dimension n is
called an operator of finite rank n. Let L n be a positive linear operator of
rank n + 1 defined on C = C[O, 1] and let L n (l; x) == 1. It was shown in
[5] that

2 II Ln(t; x) - x II c+ II L n(t2; x) - x2 11 C

~ II Ln((t -xf; x)llc~ 1/4(11 + If.

Furthermore, it was shown in [5] that

inf IILn((t-x)2;x)lIc:=:;;I/4n2,
L n E2n

(1.2)

(1.3)

where fl!n is the class of positive linear operators of rank n + 1 from C[O, 1]
into itself satisfying the condition L n (1; x) == 1. A similar result holds in the
trigonometric case.

In this paper, using basically the method of V. S. Vidensky, we give a
generalization of these results and those of [4]. We shall show that for
positive linear operators L n with finite rank n + 1, almost everywhere at
least one of the quantities

n2[Ln(tj;x)-x j ], )=0,1,2,

does not tend to zero as n --+ 00, even if the sequence of norms II L n II, n EN,
is not bounded. Furthermore, inequalities (1.2) and (1.3) are true in the
case of positive linear operators in spaces of functions defined on sets
.Q c [0,1].

The same results hold for the quantities (Ll) in the trigonometric case.
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2. LEMMAS

135

Let Fe [0, 1] be an infinite closed set, and mEN. Designate by
o= ~o < ~ 1 < ... < ~nm = 1, where nm <m, all the points of the set OJm =
g=k/m: [(k-1)/m, (k+l)/m)n[Fu{0}u{1}]#0, O<k<m}, and
put

where

Note that Fm::::J F. Taking into account that the set (0, 1)\F is composed of
disjoint open intervals, we get

lim meas([O, 1J\Fm ) = lim m - nm = meas([O, 1J\F).
m-oo m_~ m

Therefore

. ( 1. nmhm meas Fm ) = 1m -= meas(F).
m---+oo m-Xim

For each fixed natural number n choose m=m(n) so that nm <n<nm + 1 ;

and hence

1
. n
1m -(- = meas(F)

n~cxo 1n n)
(n, m = men) E 1\1). (2.1)

Now, designate by Ank(X) (nEN; k=O, 1, ...,nm ) the continuous func­
tions on [0, 1J such that Ank (~J = J ki' where J ki is the Kronecker delta,
0< i, k <nm , and Andx) is linear on each segment [~i _l' ~ i] (i = 1, ..., nm )·

Consider the sequence of positive linear operators on C[O, 1] with ranks
nm <n given by the equalities

nm

A,,(j;x)= L: f(~dAndx),
k=O

where,

n, m = m(n)E N, (fE C[O. 1], 0 < x < 1).

For every fE C[O, 1J, the function A,,(f; x) coincides with the function
f(x) at all points ~k' k=O, 1, ..., nm; it is also continuous on [0, IJ and
linear on each segment [~k-l' ~k] (k= 1, ..., nm )·
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In the following, B(F), where Fe [0,1], is the space of real bounded
functions with the uniform norm over F: IlfIIB(Fj=suPxEFlf(x)l.

LEMMA 1. Let Fe [0, 1] be an infinite closed set. Then

lim {n 2 Ii An((t- X)2; x)IIB(Fj} = [meas(F)]2;'4. (2.2)
1l-':::C

Proof Because of An(I; x) == 1 and An(t; x) = x, we have
A,,((t - X)2; x) = An(t2; x) - x 2. Furthermore, for x E [~k-I' ~k] e Fmi

this function is a second degree polynomial which vanishes at the
points ~k-I and ~k' Therefore 0:::;An((t-x)2;x)=(X-~k_I)(~k-X):::;

(~k-~k_If/4:::;1/4m2 for ~k_l:::;x:::;~k;andhence

IIA n((t-X)2;X)IIB(Fm)= 114m2,

II An ((t - X)2; x)1I B(F) ~ (1 - 8~ )/4m2,

where 8m=meas(Fm\F)/meas(Fm); 8m~0 as m~(jJ, meas(F) #0. As a
consequence of the last result and of (2.1) we obtain

lim {n2 II A,.«(t - X)2; x)11 B(F)}
n_ 00

= lim {n2
11 A,,((t-xf; x)IIB(FmJ} = [meas(F)]2/4.

n --+'X)

This completes the proof of Lemma 1. I

LEMMA 2. Let E e [0, 1] be a Lebesgue measurable set, f.1 =
meas(E) > 0, and let h be a real number such that

0< h < I1ln, (2.3 )

where n is a posltlve integer. Then there exist some points xj E E,
j=O, 1, ..., n, xo<x l < ... <xn, such that

j= 1, ..., n. (2.4 )

Proof Let h-IE:= {x=h-1t:tEE}, and let Xh-1dx) be the charac­
teristic function of the set h - I E. Setting

we get

00

g(x) = L Xh-1E(X + k),
k=O

XE [0,1),

r I

J g(x) dx = meas (h - IE) = h - III > n.
o
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There is, at least, one point y * E [0, 1) where g( y *)~ n + 1. In other words,
we can find in h- 1£ some points )'0<)'1 < ... <Y" such that lj-Jj-l =,0
(mod 1), j = 1, ..., n. The points xj = hJ> j = 1, ... , n, satisfy (2.4). I

3. RESULTS

The main result of this paper can be stated as follows.

THEOREM 1. Let {L n } n EO ~~ be a sequence of positive linear operators of
rank n + 1 mapping CEO, 1] into B(Q), where Q c [0, 1J is a measurable set.
Suppose that i" (f; . ) is a measurable function for each f and each n. Further­
more, ler }' = {n;}, where n1 < n2 < ... < n; < ... , and

er = {x: lim n; 1L",(tj; x) -xjl =0; j= 0,1,2; x E Q}. (3.1)
1 __ x;

Then meas(e,.) = O.

Proof It is quite simple to show that e.,' is measurable. Assume
meas(e

i
,) > O. Let J > 0 so that meas(ey )/2 > 1>. Then by Egorov's theorem,

there exists a measurable set v c e)', 11 = meas(v) > meas(ei') - J, on which
the convergence of the expressions in (3.1) is uniform:

lim n; IIL",(tj;x)-xjIIB(v)=O,
l~X

j= 0,1,2, (3.2)

where II f II B(vl = SUPXE v If(x)l·
Set D" := {x: L"Cf; x) = 0, VfE CEO, IJ, XEQ}, and D = lim sup Dn, =

n:~ 1 Ur:~ k D",' that is to say D is the set of all points that belong
to an infinite number of the sets D ",. Then ey n D #- 0 and meas(e j' n
[U:k D",]) --> 0 as k --> CfJ. Therefore, without loss of generality, we may
assume that

vnDn,=0 (3.3 )

Fix 11;~ N. By Lemma 2, we may find some points x k E ...

(k=O, 1, ..., n;+ 1), 0:::;XO<x1 < ... <X",+1:::; 1, for which X k -Xk - 1 ='°(mod h) (k = 1, ..., 11; + I), where h is a positive number so that
h < 11/(n; + 1), fl = meas(v).

Now, let {uj (X)};=O.I, .... "" XEQ, be a system generating the linear space
{L"J:fEC[O, l]}cB(Q). Consider the matrix

A = II uj(xk)llj~o.1. ...,,,,;k=o.l..... ,,,+J·

If rank A = 0, then Ln,(f; Xk) = LJ'=o ai(f) uj(xk ) = 0 for every fE C[O, IJ,
which implies that {Xdk=O,l... .. ",+lcvnD",. This contradicts (3.3).
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Therefore rank A =1= O. Consider a non-trivial vector {'l' k } k = 0, 1, ..., n, + 1

orthogonal to all the rows of the matrix A:

n/+ 1

L: \'l'kl=l;
k=O

nj+ 1

L: YkUj(xd=O, j=O,l,oo.,l1 i •

k=O
(3.4 )

Now, define a continuous function h on [0, 1J by the conditions
h(xk)=sgnYb k=0,1, ...,l1 i +1; h(O)=h(xo), h(l)=h(xn,+d, h(x) is
linear on each interval [O,xoJ, [XO,x l ], ..., [xn"Xn,+lJ, and [Xn,+l' 1].
Then hE Lip21h 1 and II hII e[O.I] = 1.

The function Ln,(h; x), xED, belongs to the linear space spanned by
uj(x), xEQ. Hence from (3.4),

But then

nl + 1

L: YkLn,(h; xd = 0.
k=O

ni + 1 nl + 1 nl + 1

1= L: I'l'kl= L: l'kh(xd= L: Yk[h(xd-Ln,(h;xk)J
k=O k=O k=O

(3.5)

n,+ 1

:::; L: I1'kII L n,(h;xd-h(xk)I:::;IILn,(h;x)-h(x)IIB(v)' (3.6)
k=O

On the other hand, from the Cauchy-Schwarz inequality for positive
linear functionals, we obtain for x E Q

ILn,(h; x) - h(x)1

:::; Ln,(1 h(t) - h(x)l; x) + Ih(x)11 L n,(l; x) -1\

:::; 2h -1L n,(I t - x I;x) + IL n,(1; x) - 1\

:::; 2h- l [Ln,«t - X)2; x)· L ni (l; x)] 1/2 + \L ni (l; x) -11. (3.7)

Then by (3.6) and letting h tend to /l/(n i + 1), we have

Jl2[ 1- II L ni (l; x) - 1118(>")]2/4 II L n,(1; x)ll B(v)

:::;(n i + l)21ILn,«t-x)2;x)IIB(v)

:::; (n i + 1f [II L n,(l; x) -111 B(v)

+21ILn,(t;x)-xIIB(v)+ IILn,(t2;x)-x2118(v)). (3.8)

By virtue of (3.2), the left and right hand sides of (3.8) tend respectively
to Jl2/4 and °as ni -? 00, which contradicts Jl > O. Thus we infer that
meas(ey ) = O. I
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Remark. In [4J, it was shown that ey can be non-empty and even
uncountable (Theorem 2).

THEOREM 2. Let Sf", n EN, be the class of positive linear operators L n of
rank n + 1 mapping CEO, 1J into B(Q) with Q c [0, 1] and satisfving the
condition L" (1; x) == 1. Further, let A be a subset of Q and .J the closure of
A. Then

inf II L" ((t - X)2; x)11 B(A) = [meas(.J)]2j4(n + 1)2 + rl,,/n 2, (3.9)
L n EYll

where 7." = rl,,(A) ~ 0 for each nand rt" -+ 0 as n -+ + 00.

Proof By virtue of Lemma 1, it is sufficient to prove the inequality

inf IIL,,«(t-x)2;x)IIB(J)~[meas(.J)J2j4(n+1f (3.10)
L I1 E!En

Suppose that meas(.J) > 0 and 0 < h < h' < meas(.J)j(n + 1). There exist, by
Lemma2, some points x<f<xt< ... <X~+I' xtE.J, with Xt-XL1=
o(mod h'), k = 1, 2, .,', n + 1. Then we can find n + 2 points Xo< Xl < ... <
x Jl + I' XkEA, such that Xk -Xk-l > h, k= 1, 2, ..., n + 1.

Let L", n EN, be a positive linear operator of rank n + 1 from CEO, 1]
into B(Q) with L"O;x)=1 and let {Uj(X)L~O.l, ...,Jl' xEQ, be a system
generating the linear subspace {L"f:fE CEO, 1J} of B(Q). Since 1 =
L,,( 1; x) = Z:J=o ajuj(x), we have rank A = rank II uj(xdll O,;;j';;n; O,;;k';;n + 1

=I O. Now, using the arguments of the proof of Theorem 1, we obtain, by
(3.7) and (3.8), the inequality

IILn((t-xf;x)IIB(,1)~[meas(.J)f/4(n+ 1)2,

which yields the inequality (3.10). I
As a consequence of Theorem 2 we obtain the following result.

THEOREM 3. Let {Ln } n E I'J be a sequence of positive linear operators of
rank n + 1 from CEO, 1J into B(Q) with Q c [0, 1]. Suppose that
L n (l; x) = 1 for each n EN and A c Q. Then

2 II Ln(t; x) - x IIB(A) + II L n(t2; x) - x 2
11 B(,1)

~ IILn«(t-xf;x)IIB(,1'~ [meas(.J)J 2/4(n+ 1)2, (3.11)

where .J stands for the closure of A.

Let LP(Q), 1~p ~ 00, be the spaces of those real-valued and measurable
functions which are Lebesgue integrable to the pth power over measurable
set Q c [0, 1]. We have:
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THEOREM 4. Under the same conditions of Theorem 1, suppose that the
spaces C[O, 1] and B(Q) are replaced by U[O, 1] and U(Q), 1~p~oo,

respectively. Then for each veQ, meas(v»O, there exists a constant Cv>O
so that

II L,,(1; x)-11Iv(v) + 211 L,,(t; x) -x Ilv(v)

+ II L" (t 2
; x) - x 2 11 V(v) ~ C/n 2

• (3.12)

Proof If the inequality (3.12) is not true, there exists a sequence of
indexes nO <nl < ... <n;< ... such that limi~oc nf[L",(ti;x)-Xi ] =0,
j = 0, 1, 2, for almost all x E V. But this contradicts the proof of
Theorem 1. I

All results, we have obtained, are still valid in the trigonometric case. In
particular, the following assertion holds.

THEOREM 1*. Under the same conditions of Theorem 1, suppose that the
spaces C[O, 1], B(Q), and the set ey are replaced by C2rr , B(Q*), where
Q *e [0, 2rr) is a measurable set, and

ei = {x: lim ni IL",(1; x)-ll =0,
1~Cl)

lim ni 1L" (cos t; x) - cos x 1= 0,. ,
l~ x;

lim ni IL,,(sin t;x)-sinxl =O;XEQ*},. ,
l~ x;

respectively. Then meas(ei) = 0.
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